If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16y^2+4-20y=0
a = 16; b = -20; c = +4;
Δ = b2-4ac
Δ = -202-4·16·4
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-12}{2*16}=\frac{8}{32} =1/4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+12}{2*16}=\frac{32}{32} =1 $
| U=13x-44 | | 19x+4.5=90 | | V=4x+20 | | 7=22-3h | | 13x-25=9x+3 | | 7(x-8)(3x+7)=0 | | (x-2)5=30 | | t^2-8t15=0 | | -12=v/2-6 | | 4w+16=84 | | 43=3y+13 | | 38=4v-10 | | 16x^2+23x+9=0 | | 22−x=√5x+1622-x=5x+16 | | 3(2x-14)-X+1/4+X=15-(-9x-5) | | 7.4m=-26.9 | | 3x^2+20x-20=0 | | 2x^2-16-40=0 | | 36^n=6^12 | | 3x^2-13=230 | | 6/(x+2)=5/4x | | 3x+2-1=60 | | 24x-12=8x+9 | | 24x+-12=8x+9 | | 28÷4=20÷4+x÷4 | | 3/8(y-72)=-16 | | 2/5=x/275 | | 6y+13=3y=5 | | 180=7x-3(6x+15) | | 0=32+2(m-6) | | t/3+3.1=-4.4 | | 0.9^x=0.5 |